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Abstract—MATPOWER is an open-source Matlab-based power
system simulation package that provides a high-level set of power
flow, optimal power flow (OPF), and other tools targeted toward
researchers, educators, and students. The OPF architecture is
designed to be extensible, making it easy to add user-defined vari-
ables, costs, and constraints to the standard OPF problem. This
paper presents the details of the network modeling and problem
formulations used by MATPOWER, including its extensible OPF
architecture. This structure is used internally to implement several
extensions to the standard OPF problem, including piece-wise
linear cost functions, dispatchable loads, generator capability
curves, and branch angle difference limits. Simulation results are
presented for a number of test cases comparing the performance
of several available OPF solvers and demonstrating MATPOWER’s
ability to solve large-scale AC and DC OPF problems.

Index Terms—Load flow analysis, optimal power flow, optimiza-
tion methods, power engineering, power engineering education,
power system economics, power system simulation, power systems,
simulation software, software tools.

I. INTRODUCTION

T HIS paper describes MATPOWER, an open-source Matlab
power system simulation package [1]. It is used widely in

research and education for AC and DC power flow and optimal
power flow (OPF) simulations. It also includes tools for running
OPF-based auction markets and co-optimizing reserves and en-
ergy. Included in the distribution are numerous example power
flow and OPF cases, ranging from a trivial four-bus example to
real-world cases with a few thousand buses.

MATPOWER consists of a set of Matlab M-files designed to give
the best performance possible while keeping the code simple to
understand and customize. Matlab has become a popular tool for
scientific computing, combining a high-level language ideal for
matrix and vector computations, a cross-platform runtime with
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robust math libraries, an integrated development environment
and GUI with excellent visualization capabilities, and an active
community of users and developers. As a high-level scientific
computing language, it is well suited for the numerical computa-
tion typical of steady-state power system simulations.

The initial motivation for the development of the Matlab-
based power flow and OPF code that would eventually become
MATPOWER arose from the computational requirements of the
PowerWeb platform [3], [4]. As a web-based market simulation
platform used to test electricity markets, PowerWeb requires a
“smart market” auction clearing software that uses an OPF to
compute the allocations and pricing. Having the clear potential
to be useful to other researchers and educators, the software was
released in 1997 via the Internet as an open-source power system
simulation package, now distributed under the GNU GPL [2].
Even beyond its initial release, much of the ongoing develop-
ment of MATPOWER continued to be driven in large part by the
needs of the PowerWeb project. This at least partially explains
the lack of a graphical user interface used by some related tools
such as PSAT [5].

While it is often employed as an end-user tool for simply
running one-shot simulations defined via an input case file, the
package can also be quite valuable as a library of functions
for use in custom code developed for one’s own research. At
this lower level, MATPOWER provides easy-to-use functions for
forming standard network and matrices, calculating
power transfer and line outage distribution factors (PTDFs and
LODFs), and efficiently computing first and second derivatives
of the power flow equations, among other things. At a higher
level, the structure of the OPF implementation is explicitly
designed to be extensible [6], allowing for the addition of
user-defined variables, costs, and linear constraints.

The default OPF solver is a high-performance primal-dual in-
terior point solver implemented in pure-Matlab. This solver has
application to general nonlinear optimization problems outside
of MATPOWER and comes with a convenience wrapper function
to make it trivial to set up and solve linear programming (LP)
and quadratic programming (QP) problems.

To help ensure the quality of the code, MATPOWER includes
an extensive suite of automated tests. Some may find the testing
framework useful for creating automated tests for their own
Matlab programs.

A number of Matlab-based software packages related to
power system simulation have been developed by others. A
nice summary of their features is presented in [5]. The pri-
mary distinguishing characteristics of MATPOWER, aside from
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Fig. 1. Branch model.

being one of the first to be publicly and freely available as
open-source, are the extensible architecture of the OPF formu-
lation and its ease of use as a toolbox of functions to incorporate
into one’s own programs. It is also compatible with Octave.

This paper describes the MATPOWER package as it stands at
version 4, detailing the component modeling in Section II, the
power flow and optimal power flow formulations in Sections III
and IV, and some additional functionality in Section V. Some
example results and conclusions are presented in Section VI.

II. MODELING

MATPOWER employs all of the standard steady-state models
typically used for power flow analysis. The AC models are de-
scribed first, then the simplified DC models. Internally, the mag-
nitudes of all values are expressed in per unit and angles of com-
plex quantities are expressed in radians. Due to the strengths
of the Matlab programming language in handling matrices and
vectors, the models and equations are presented here in matrix
and vector form.

A. Data Formats

The data files used by MATPOWER are Matlab M-files or
MAT-files which define and return a single Matlab struct. The
M-file format is plain text that can be edited using any standard
text editor. The fields of the struct are baseMVA, bus, branch,
gen, and optionally gencost, where baseMVA is a scalar and
the rest are matrices. In the matrices, each row corresponds to
a single bus, branch, or generator. The columns are similar to
the columns in the standard IEEE CDF and PTI formats. The
number of rows in bus, branch, and gen are , , and ,
respectively.

B. Branches

All transmission lines, transformers, and phase shifters are
modeled with a common branch model, consisting of a standard

transmission line model, with series impedance
and total charging capacitance , in series with an ideal

phase shifting transformer. The transformer, whose tap ratio has
magnitude and phase shift angle , is located at the from
end of the branch, as shown in Fig. 1.

The complex current injections and at the from and to
ends of the branch, respectively, can be expressed in terms of the
2 2 branch admittance matrix and the respective terminal
voltages and

(1)

With the series admittance element in the model denoted by
, the branch admittance matrix can be written

(2)

If the four elements of this matrix for branch are labeled as
follows:

(3)

then four vectors , , , and can be constructed,
where the th element of each comes from the corresponding el-
ement of . Furthermore, the sparse connection ma-
trices and used in building the system admittance ma-
trices can be defined as follows. The th element of and
the th element of are equal to 1 for each branch , where
branch connects from bus to bus . All other elements of
and are zero.

C. Generators

A generator is modeled as a complex power injection at a
specific bus. For generator , the injection is

(4)

Let be the vector of these generator
injections. A sparse generator connection matrix
can be defined such that its th element is 1 if generator
is located at bus and 0 otherwise. The vector of all bus
injections from generators can then be expressed as

(5)

D. Loads

Constant power loads are modeled as a specified quantity of
real and reactive power consumed at a bus. For bus , the load is

(6)

and denotes the vector of complex loads at
all buses. Constant impedance and constant current loads are not
implemented directly, but the constant impedance portions can
be modeled as a shunt element described below. Dispatchable
loads are modeled as negative generators and appear as negative
values in .

E. Shunt Elements

A shunt connected element such as a capacitor or inductor is
modeled as a fixed impedance to ground at a bus. The admit-
tance of the shunt element at bus is given as

(7)

and denotes the vector of shunt
admittances at all buses.

F. Network Equations

For a network with buses, all constant impedance elements
of the model are incorporated into a complex bus ad-
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mittance matrix that relates the complex nodal current in-
jections to the complex node voltages :

(8)

Similarly, for a network with branches, the system
branch admittance matrices and relate the bus voltages to
the vectors and of branch currents at the from and
to ends of all branches, respectively:

(9)

(10)

If is used to denote an operator that takes an vector and
creates the corresponding diagonal matrix with the vector
elements on the diagonal, these system admittance matrices can
be formed as follows:

(11)

(12)

(13)

The current injections of (8)–(10) can be used to compute
the corresponding complex power injections as functions of the
complex bus voltages :

(14)

(15)

(16)

The nodal bus injections are then matched to the injections from
loads and generators to form the AC nodal power balance equa-
tions, expressed as a function of the complex bus voltages and
generator injections in complex matrix form as

(17)

G. DC Modeling

The DC formulation [11] (with more detailed derivations in
[1]) is based on the same parameters, but with the following
three additional simplifying assumptions.

• Branches can be considered lossless. In particular, branch
resistances and charging capacitances are negligible:

(18)

• All bus voltage magnitudes are close to 1 p.u.

(19)

• Voltage angle differences across branches are small enough
that

(20)

By combining (1) and (2) with (18) and (19), the complex
current flow in a branch can be approximated as

(21)

Furthermore, using (19) and this approximate current to com-
pute the complex power flow, then extracting the real part and
applying the last of the DC modeling assumptions from (20)
yields

(22)

As expected, given the lossless assumption, a similar derivation
for leads to .

The relationship between the real power flows and voltage
angles for an individual branch can then be summarized as

(23)

where , , and is

defined in terms of the series reactance and tap ratio for that
branch as .

With a DC model, the linear network equations relate real
power to bus voltage angles, versus complex currents to com-
plex bus voltages in the AC case. Let the vector
be constructed similar to , where the th element is and
let be the vector whose th element is equal to

. Then the nodal real power injections can be expressed
as a linear function of , the vector of bus voltage angles

(24)

where . Similarly, the branch
flows at the from ends of each branch are linear functions of the
bus voltage angles

(25)

and, due to the lossless assumption, the flows at the to ends are
given by . The construction of the system matrices
is analogous to the system matrices for the AC model:

(26)

(27)

The DC nodal power balance equations for the system can be
expressed in matrix form as

(28)

where approximates the amount of power consumed by the
constant impedance shunt elements under the voltage assump-
tion of (19).

III. POWER FLOW

The standard power flow or loadflow problem involves
solving for the set of voltages and flows in a network cor-
responding to a specified pattern of load and generation.
MATPOWER includes solvers for both AC and DC power flow
problems, both of which involve solving a set of equations of
the form

(29)
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constructed by expressing a subset of the nodal power balance
equations as functions of unknown voltage quantities.

All of MATPOWER’s solvers exploit the sparsity of the
problem and, except for Gauss-Seidel, scale well to very large
systems. Currently, none of them include any automatic up-
dating of transformer taps or other techniques to attempt to
satisfy typical OPF constraints, such as generator, voltage, or
branch flow limits.

A. AC Power Flow

In MATPOWER, by convention, a single generator bus is typ-
ically chosen as a reference bus to serve the roles of both a
voltage angle reference and a real power slack. The voltage
angle at the reference bus has a known value, but the real power
generation at the slack bus is taken as unknown to avoid over-
specifying the problem. The remaining generator buses are clas-
sified as PV buses, with the values of voltage magnitude and
generator real power injection given. Since the loads and
are also given, all non-generator buses are PQ buses, with real
and reactive injections fully specified. Let , , and
denote the sets of bus indices of the reference bus, PV buses,
and PQ buses, respectively.

In the traditional formulation of the AC power flow problem,
the power balance equation in (17) is split into its real and reac-
tive components, expressed as functions of the voltage angles
and magnitudes and generator injections and , where
the load injections are assumed constant and given:

(30)

(31)

For the AC power flow problem, the function from (29)
is formed by taking the left-hand side of the real power balance
equations (30) for all non-slack buses and the reactive power
balance equations (31) for all PQ buses and plugging in the ref-
erence angle, the loads and the known generator injections and
voltage magnitudes:

(32)

The vector consists of the remaining unknown voltage quan-
tities, namely the voltage angles at all non-reference buses and
the voltage magnitudes at PQ buses:

(33)

This yields a system of nonlinear equations with
equations and unknowns, where and are the number
of PV and PQ buses, respectively. After solving for , the re-
maining real power balance equation can be used to compute
the generator real power injection at the slack bus. Similarly,
the remaining reactive power balance equations yield
the generator reactive power injections.

MATPOWER includes four different algorithms for solving the
AC power flow problem. The default solver is based on a stan-
dard Newton’s method [7] using a polar form and a full Jacobian
updated at each iteration. Each Newton step involves computing
the mismatch , forming the Jacobian based on the sensitiv-
ities of these mismatches to changes in and solving for an

updated value of by factorizing this Jacobian. This method is
described in detail in many textbooks.

Also included are solvers based on variations of the fast-
decoupled method [8], specifically, the XB and BX methods
described in [9]. These solvers greatly reduce the amount of
computation per iteration, by updating the voltage magnitudes
and angles separately based on constant approximate Jacobians
which are factored only once at the beginning of the solution
process. These per-iteration savings, however, come at the cost
of more iterations. The fourth algorithm is the standard Gauss-
Seidel method from Glimm and Stagg [10]. It has numerous dis-
advantages relative to the Newton method and is included pri-
marily for academic interest.

By default, the AC power flow solvers simply solve the
problem described above, ignoring any generator limits, branch
flow limits, voltage magnitude limits, etc. However, there is an
option that allows for the generator reactive power limits to be
respected at the expense of the voltage setpoint. This is done
by adding an outer loop around the AC power flow solution. If
any generator has a violated reactive power limit, its reactive
injection is fixed at the limit, the corresponding bus is converted
to a PQ bus, and the power flow is solved again. This procedure
is repeated until there are no more violations.

B. DC Power Flow

For the DC power flow problem [11], the vector consists of
the set of voltage angles at non-reference buses

(34)

and (29) takes the form

(35)

where is the matrix obtained by simply
eliminating from the row and column corresponding to
the slack bus and reference angle, respectively. Given that the
generator injections are specified at all but the slack bus,
can be formed directly from the non-slack rows of the last four
terms of (28).

The voltage angles in are computed by a direct solution of
the set of linear equations. The branch flows and slack bus gen-
erator injection are then calculated directly from the bus voltage
angles via (25) and the appropriate row in (28), respectively.

C. Linear Shift Factors

The DC power flow model can also be used to compute the
sensitivities of branch flows to changes in nodal real power in-
jections, sometimes called injection shift factors (ISF) or gener-
ation shift factors [11]. These sensitivity matrices, also
called power transfer distribution factors or PTDFs, carry an im-
plicit assumption about the slack distribution. If is used to de-
note a PTDF matrix, then the element in row and column , ,
represents the change in the real power flow in branch given a
unit increase in the power injected at bus , with the assumption
that the additional unit of power is extracted according to some
specified slack distribution:

(36)
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This slack distribution can be expressed as an vector
of non-negative weights whose elements sum to 1. Each element
specifies the proportion of the slack taken up at each bus. For the
special case of a single slack bus , is equal to the vector .
The corresponding PTDF matrix can be constructed by first
creating the matrix

(37)

then inserting a column of zeros at column . Here and
are obtained from and , respectively, by eliminating
their reference bus columns and, in the case of , removing
row corresponding to the slack bus.

The PTDF matrix , corresponding to a general slack dis-
tribution , can be obtained from any other PTDF, such as ,
by subtracting from each column, equivalent to the following
simple matrix multiplication:

(38)

These same linear shift factors may also be used to compute
sensitivities of branch flows to branch outages, known as line
outage distribution factors or LODFs [12]. Given a PTDF ma-
trix , the corresponding LODF matrix can be
constructed as follows, where is the element in row and
column , representing the change in flow in branch (as a frac-
tion of its initial flow) for an outage of branch .

First, let represent the matrix of sensitivities of branch
flows to branch flows, found by multplying the PTDF matrix
by the node-branch incidence matrix:

(39)

If is the sensitivity of flow in branch with respect to flow
in branch , then can be expressed as

(40)

MATPOWER includes functions for computing both the DC
PTDF matrix and the corresponding LODF matrix for either a
single slack bus or a general slack distribution vector .

IV. OPTIMAL POWER FLOW

MATPOWER includes code to solve both AC and DC versions
of the optimal power flow problem. The standard version of each
takes the following form:

(41)

(42)

(43)

(44)

A. Standard AC OPF

The optimization vector for the standard AC OPF problem
consists of the vectors of voltage angles and magni-

tudes and the vectors of generator real and reactive
power injections and :

(45)

The objective function (41) is simply a summation of individual
polynomial cost functions and of real and reactive power
injections, respectively, for each generator:

(46)

The equality constraints in (42) are simply the full set of
nonlinear real and reactive power balance equations from (30)
and (31). The inequality constraints (43) consist of two sets of

branch flow limits as nonlinear functions of the bus voltage
angles and magnitudes, one for the from end and one for the to
end of each branch:

(47)

(48)

The flows are typically apparent power flows expressed in MVA,
but can be real power or current flows, yielding the following
three possible forms for the flow constraints:

(49)

where is defined in (9), in (15), , and the
vector of flow limits has the appropriate units for the type
of constraint. It is likewise for .

The variable limits (44) include an equality constraint on any
reference bus angle and upper and lower limits on all bus voltage
magnitudes and real and reactive generator injections:

(50)

(51)

(52)

(53)

B. Standard DC OPF

When using DC network modeling assumptions and limiting
polynomial costs to second order, the standard OPF problem
above can be simplified to a quadratic program, with linear
constraints and a quadratic cost function. In this case, the
voltage magnitudes and reactive powers are eliminated from
the problem completely and real power flows are modeled as
linear functions of the voltage angles. The optimization variable
is

(54)



ZIMMERMAN et al.: MATPOWER: STEADY-STATE OPERATIONS, PLANNING, AND ANALYSIS TOOLS 17

and the overall problem reduces to (55)–(60) at the bottom of
the page.

C. Extended OPF Formulation

MATPOWER employs an extensible OPF structure [6] to allow
the user to modify or augment the problem formulation without
rewriting the portions that are shared with the standard OPF for-
mulation. This is done through optional input parameters, pre-
serving the ability to use pre-compiled solvers. The standard for-
mulation is modified by introducing additional optional user-de-
fined costs , constraints, and variables and can be written in
the following form:

(61)

(62)

(63)

(64)

(65)

(66)

The user-defined cost function is specified in terms a set of
parameters in a pre-defined form described in detail in [6]. This
form provides the flexibility to handle a wide range of costs,
from simple linear functions of the optimization variables to
scaled quadratic penalties on quantities, such as voltages, lying
outside a desired range, to functions of linear combinations of
variables, inspired by the requirements of price coordination
terms found in the decomposition of large loosely coupled prob-
lems encountered in our own research.

D. Standard Extensions

In addition to making this extensible OPF structure available
to end users, MATPOWER also takes advantage of it internally to
implement several additional capabilities.

1) Piecewise Linear Costs: The standard OPF formulation
in (41)–(44) does not directly handle the non-smooth piece-
wise linear cost functions that typically arise from discrete bids
and offers in electricity markets. When such cost functions are
convex, however, they can be modeled using a constrained cost
variable (CCV) method. The piecewise linear cost function
is replaced by a helper variable and a set of linear constraints
that form a convex “basin” requiring the cost variable to lie in
the epigraph of the function .

A convex -segment piecewise linear cost function

...
...

(67)

can be defined by a sequence of points , ,
where denotes the slope of the th segment

(68)

and and .
The “basin” corresponding to this cost function is formed by

the following constraints on the helper cost variable :

(69)

The cost term added to the objective function in place of
is simply the variable . For an AC or DC OPF, MATPOWER

uses this CCV approach internally to automatically generate the
appropriate helper variable, cost term, and corresponding set of
constraints for any piecewise linear generator costs.

2) Dispatchable Loads: A simple approach to dispatchable
or price-sensitive loads is to model them as negative real power
injections with associated negative costs. This is done by spec-
ifying a generator with a negative output, ranging from a min-
imum injection equal to the negative of the largest possible load
to a maximum injection of zero. With this model, if the nega-
tive cost corresponds to a benefit for consumption, minimizing
the cost of generation is equivalent to maximizing social
welfare.

With an AC network model, there is also the question of re-
active dispatch for such loads. In MATPOWER, it is assumed that
dispatchable loads maintain a constant power factor and an addi-
tional equality constraint is automatically added to enforce this
requirement for any “negative generator” being used to model a
dispatchable load.

3) Generator Capability Curves: The typical AC OPF for-
mulation includes simple box constraints on a generator’s real
and reactive injections. However, the true - capability curves
of physical generators usually involve some tradeoff between
real and reactive capability. If the user provides the parameters
defining this tradeoff for a generator, MATPOWER automatically
constructs the corresponding constraints.

4) Branch Angle Difference Limits: The difference between
the bus voltage angle at the from end of a branch and the

(55)

(56)

(57)

(58)

(59)

(60)
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TABLE I
OPF TEST CASES

angle at the to end can be bounded above and below to act as
a proxy for a transient stability limit, for example. If these limits
are provided, MATPOWER creates the corresponding constraints
on the voltage angle variables.

E. Solvers

Early versions of MATPOWER relied on Matlab’s Optimiza-
tion Toolbox [13] to provide the NLP and QP solvers needed
to solve the AC and DC OPF problems, respectively. While
they worked reasonably well for very small systems, they did
not scale well to larger networks. Eventually, optional packages
with additional solvers were added to improve performance,
typically relying on Matlab extension (MEX) files implemented
in Fortran or C and pre-compiled for each machine architec-
ture. For DC optimal power flow, there is a MEX build [14]
of the high performance BPMPD solver [15] for LP/QP prob-
lems. For the AC OPF problem, the MINOPF [16] and TSPOPF
[17] packages provide solvers suitable for much larger systems.
The former is based on MINOS [18] and the latter includes the
primal-dual interior point and trust region based augmented La-
grangian methods described in [19].

Beginning with version 4, MATPOWER also includes its own
primal-dual interior point solver (MIPS) implemented in pure-
Matlab code, derived from the MEX implementation of the cor-
responding algorithms in [19]. If no optional packages are in-
stalled, the MIPS solver will be used by default for both the AC
OPF and as the QP solver used by the DC OPF. The AC OPF
solver also employs a unique technique for efficiently forming
the required Hessians via a few simple matrix operations. The
MIPS solver has application to general nonlinear optimization
problems outside of MATPOWER and comes with a convenience
wrapper function to make it trivial to set up and solve LP and
QP problems.

V. ADDITIONAL FUNCTIONALITY

As mentioned earlier, MATPOWER was birthed out of a need
for an OPF-based electricity auction clearing mechanism for a
“smart market”. In this context, offers to sell and bids to buy
power from generators and loads define the “costs” for the OPF
that determines the allocations and prices used to clear the auc-
tion. MATPOWER includes code that takes bids and offers for real
or reactive power, sets up and runs the corresponding OPF, and
returns the cleared bids and offers.

The standard OPF formulation described above includes no
mechanism for completely shutting down generators which are
very expensive to operate. Instead they are simply dispatched at

their minimum generation limits. MATPOWER includes the capa-
bility to run an OPF combined with a unit de-commitment for
a single time period, which allows it to shut down these expen-
sive units and find a least cost commitment and dispatch using
an algorithm similar to dynamic programming.

In some cases, it may be desirable to further constrain an OPF
solution with the requirement to hold a specified level of ca-
pacity in reserve to cover contingencies. MATPOWER includes
OPF extensions that allow it to co-optimize energy and reserves,
subject to a set of fixed zonal reserve requirements. This code
also serves as an example of how to customize the standard OPF
with additional variables, costs, and constraints.

VI. RESULTS AND CONCLUSIONS

Several example cases are used to compare the performance
of the various OPF solvers on example networks ranging in size
from nine buses and three generators to tens of thousands of
buses, thousands of generators and tens of thousands of addi-
tional user variables and constraints. Table I summarizes the
test cases in terms of the order of the cost function (quadratic
or linear), numbers of buses, generators and branches ( , ,
and ), numbers of variables and constraints ( and ) for
both AC and DC OPF formulations, and the number of binding
lower voltage limits and branch flow limits for
the AC problem and flow limits for the DC case.

For each case, six different AC OPF solvers and four dif-
ferent DC OPF solvers were used to solve the problem on a
laptop with a 2.33-GHz Intel Core 2 Duo processor running
Matlab 7.9. Table II gives the run times in seconds for the solvers
which were successful, with the fastest time highlighted in bold
for each example. The first algorithm listed for each is from
Matlab’s Optimization Toolbox, in the case of the AC
OPF and or for the DC problem. Next are
the standard and step-controlled variants of the pure-Matlab im-
plementation of the primal-dual interior point method, and last
are some of the C and Fortran-based MEX solvers distributed
as MATPOWER optional packages.

For small systems, the clear winners are MINOPF for AC and
BPMPD for DC, both Fortran-based MEX files. For larger sys-
tems, the primal-dual interior point solvers have the clear advan-
tage, with the pure-Matlab implementation offering respectable
performance relative to the C-based MEX versions.

MATPOWER provides a high-level set of power flow and
optimal power flow tools for researchers, educators, and stu-
dents. The optimal power flow is extensible, allowing for easy
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TABLE II
OPF RUN TIMES

modification of the problem formulation. The performance
of the included OPF solvers, along with others available as
optional plug-ins, scales quite well to very large systems. At the
time of writing, there have been well over 20 000 downloads of
MATPOWER, with about 50% primarily for education, 43% for
research, and 7% for industry and other.
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